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The six-vertex model is mapped to three-dimensional sphere stacks and different boundary conditions
corresponding to different containers. The shape of the container provides a qualitative visualization of the
boundary effect. Based on the sphere-stacking picture, we map the phase spaces of the six-vertex models to
discrete networks. A node in the network represents a state of the system, and an edge between two nodes
represents a zero-energy spin flip, which corresponds to adding or removing a sphere. The network analysis
shows that the phase spaces of systems with different boundary conditions share some common features. We
derived a few formulas for the number and the sizes of the disconnected phase-space subnetworks under the
periodic boundary conditions. The sphere stacking provides new challenges in combinatorics and may cast
light on some two-dimensional models.
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I. INTRODUCTION

Phase space structures are important for understanding the
dynamics of the system. However they are usually too large
and complicated to be analyzed quantitatively. Here, we map
the phase spaces of a spin model into complex networks so
that quantitative network analysis �1–3� can be applied to the
phase-space study. Spins on lattices have discrete degrees of
freedom, such that their phase spaces are discrete and can be
viewed as networks. One node in the network corresponds to
one configuration state of the system. Two nodes are con-
nected by an edge �or link� if the system can directly evolve
from one state to the other without passing through interme-
diate states. Edges are undirected because dynamic processes
at the microscopic level are time reversible. In �4�, we con-
structed the ground-state phase-space networks of two clas-
sical frustrated spin models, namely, antiferromagnet on tri-
angular lattice and square ice. Their phase spaces share some
common features, including the small-world property,
Gaussian-like connectivity distributions and Gaussian spec-
tral densities. Here we showed that these features also exist
in the phase spaces of the six-vertex models �5,6� under dif-
ferent boundary conditions. Note that the square ice is a spe-
cial case of the six-vertex model in a square area with the
domain-wall boundary condition.

To construct the phase-space network, we first generate all
the possible states of the spin system, i.e., all the nodes in the
network. The more challenging step is to identify whether
two nodes are connected by an edge. A convenient way to
construct the phase-space network is to map the spin model
to a higher dimensional stack so that adding or removing a
building block of the stack corresponds to an edge in the
network �4�. For example, in the elegant one-to-one mapping
between the two-dimensional �2D� antiferromagnet on trian-
gular lattice �7� and the three-dimensional �3D� cube stack
�8�, adding or removing a cube corresponds to a basic zero-
energy spin flip. Hence, two states are connected in the
phase-space network if they are different by one cube �4�.
Recently, we directly observed such zero-energy spin flips in
a colloidal experiment �9�. Here we mapped the 2D six-
vertex models to the 3D close-packed sphere stacks before

the network construction. The sphere stacks also provide a
direct visualization of the boundary effect and make the sym-
metries of the system more transparent. Moreover, the sphere
stacking approach helped us to derive a few formulas for the
number and the sizes of the disconnected subnetworks of the
phase spaces under the periodic boundary conditions.

II. MAPPING BETWEEN THE SIX-VERTEX MODEL AND
SPHERE STACKS

The six-vertex model is a spin ice on square lattice, see
the example with the domain-wall boundary condition in Fig.
1�a�. The arrows follow the ice rule, i.e., each vertex has two
incoming and two outgoing arrows. Consequently each ver-
tex has C4

2=6 possible configurations as shown in Fig. 1�b�.
If the arrows are taken as ferromagnetic spins, geometrical
frustration arises as shown in Fig. 1�c�. Flipping a closed
loop of arrows from clockwise to counterclockwise �or vice
versa� does not break the ice rule and costs no energy. The
smallest local zero-energy mode is the flipping of the four-
arrow loop shown in Fig. 1�d�. We call such flipping the
basic flip. �5� shows that any configuration change can be
decomposed into a sequence of such flips under a fixed
boundary condition.

The spin ice configuration in Fig. 1�a� has one-to-one cor-
respondences to the square ice shown in Fig. 1�f�, and the
jigsaw tiling and alternating signed matrix shown in Fig. 1�g�
�10�. The alternating signed matrixes are square matrixes
with entries 0 or �1 such that each row and column has an
alternating sequence of +1 and −1 �zeroes excluded� starting
and ending with +1. In combinatorics, the number of L�L
alternating signed matrixes is �10�

Nn�L� = �
1�i�j�L

L + i + j − 1

2i + j − 1
= �

j=0

L−1
�3j + 1�!
�L + j�!

� �27

16
��L2/2�

when L → � . �1�

This formula also gives the number of nodes in the phase-
space network of the L�L spin ice under the domain-wall
boundary condition.
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To construct the phase-space network, we first map the
six-vertex model as sphere stacks in the face-centered cubic
�FCC� lattice shown in Fig. 1�h�, so that each basic flip is
equivalent to adding or removing a sphere. In Fig. 1�a�, each
square plaquette is assigned a height based on the height rule
�5� shown in Fig. 1�e�: When walking from the plaquette
with height h to its neighbor, the height increases by 1 if it
crosses a left arrow and decreases by 1 if it crosses a right
arrow. The ice rule guarantees that the height change around
a vertex is zero and the height is independent of the path
along which it was computed. A plaquette can flip only when
its four neighbor plaquettes have the same height. This indi-
cates that each building block is “supported” by four blocks
underneath in an effective “gravity field.” Thus, the stack can
be viewed as an FCC stacking along the �100� direction. An
FCC lattice can be conveniently represented by a stack of
close-packed spheres. This stacking is better visualized in
Fig. 2. Figure 2�a� shows the lowest possible heights, which
contain no clockwise four-arrow loop. These lowest heights
define a vacant container made of two tilted triangles as
shown in the lower panel of Fig. 2�a�. Each basic flip
changes the height by 2, which equals to adding or removing
a sphere of unit radius. Flipping all available counterclock-
wise loops �yellow plaquettes� is equivalent to adding a layer
of spheres, see Figs. 2�b�–2�f�. The maximum heights in Fig.

2�f� are reached by the continued flipping of counterclock-
wise loops to clockwise loops until no counterclockwise loop
is left. The height of each plaquette represents the physical
height of the corresponding sphere on the top surface of the
stack. We generate all the legal configurations by flipping
counterclockwise loops from the vacant state, i.e., adding
spheres from the vacant container in Fig. 2�a�. The heights in
Fig. 2�f� define a lid made of anther two triangles. The con-
tainer and the lid form a tetrahedron.

The six-vertex model has a similar solid-on-solid repre-
sentation on the body-centered cubic �BCC� lattice �11�.
Here we use the FCC sphere stacks because it appears to be
a more natural representation with simple building-block
shape and simple container shape. Moreover, FCC lattice can
be represented by a simple polyhedra stacking under gravity,
but BCC cannot. The Wigner-Seitz cell of the FCC lattice is
a rhombic dodecahedron, which is supported by four rhom-
bic dodecahedra underneath. In contrast, the Wigner-Seitz
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FIG. 1. �Color online� �a� A configuration of the six-vertex
model �or the spin ice� on a 5�5 lattice with the domain-wall
boundary condition. Each plaquette is assigned a height based on
the height rule in �e�. The upper left corner is defined as height zero.
The basic flips are the four-arrow loops labeled in red �clockwise�
and yellow �counterclockwise�. �b� The six allowed types of ver-
texes that satisfy the ice rule. �c� Four magnets placed at a cross
inevitably have frustrations. �d� The basic flip. �e�: The height rule.
�f–h� Three equivalent representations of �a�. �f� Water molecules
frozen on a square lattice, i.e., square ice. Hydrogen atoms corre-
spond to outgoing arrows. �g� Each jigsaw tile �10� can be viewed
as a water molecule with one oxygen atom in the center and two
hydrogen atoms at the two bulges. By assigning vertical tiles as 1,
horizontal tiles as −1 and the other four types as 0, a 5�5 alternat-
ing signed matrix �10� is obtained. �h� The corresponding red sphere
stack, which is stable under gravity. Yellow spheres are vacant sites.
The four removable red spheres and four addable yellow sites on
the top of the red-sphere stack correspond to the four red and four
yellow plaquettes in �a�.
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FIG. 2. �Color online� The one-to-one correspondence between
the six-vertex models with domain-wall boundary conditions and
sphere stacks in a tetrahedron. �a� The lowest possible heights under
this boundary condition. The zero height is defined as the upper left
plaquette and other heights are generated by the height rule in Fig.
1�e�. These heights define the two yellow triangles in the bottom
panel. �b� After flipping the five yellow counterclockwise four-spin
loops in �a� to the red clockwise loops in �b�, the heights of the five
plaquettes are increased by 2. It is equivalent to adding five red
spheres as shown in the lower panel of �b�. The yellow spheres are
vacant sites. �c–f� Each figure is obtained by flipping all the yellow
loops in the previous figure, i.e., adding a layer of spheres to the
previous stack. The highest possible heights are shown in �f�. These
heights define a lid surface, which is an upside-down container in
�a�.
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cell of the BCC lattice has a flat square surface on the top so
that it can be supported by only one block underneath. For a
correct stacking, one building block should be supported by
four blocks in order to reflect that one plaquette can flip only
when the four neighbors have the same height.

III. BOUNDARY EFFECTS

The six-vertex model has been solved for the periodic �6�,
the anti-periodic �12� and the domain-wall boundary condi-
tions �13�. We have shown that the domain-wall boundary
condition corresponds to sphere stacks in a simple tetrahe-
dron. We can easily design another simple boundary condi-
tion as shown in Fig. 3�a� which corresponds to sphere stacks
in a simple octahedron. It would be interesting to explore
whether this boundary condition can also be exactly solved
in statistical mechanics �14�.

Different boundary conditions correspond to different
container shapes, for example, see Figs. 2–4. Given a fixed
boundary condition, the lowest and the highest possible
heights can be directly written out layer by layer from the
boundary to the bulk, e.g., see Figs. 4�a� and 4�b�. The col-
ored plaquettes in Figs. 4�a� and 4�b� show that the lid con-
tains one height maximum and the container contains nine
height minima. These heights define a lid and a container
with different shapes as shown in Figs. 4�d� and 4�e�. The
container and the lid form an interesting pair of dual sur-
faces: using one as the container, the other will emerge as the
surface of the highest “sand pile” of small spheres, see Figs.
4�d�, 4�e�, 4�h�, and 4�i�. In fact, they are dual surfaces be-
cause packing spheres in the container is equivalent to pack-
ing buoyant spheres in the corresponding lid. The container
and the lid would switch roles by reversing the height rule in
Fig. 1�e�. The height difference between the lid and the con-
tainer in a square area appears to be a pyramid under all fixed
boundary conditions shown in Figs. 3–5.

One peculiar property of frustrated spin models is that
boundary effects often, but not always, percolate through the
entire system even in the infinite-sized limit �15–17�. This
can be directly visualized from the sphere stacks in contain-
ers. Figure 6�a� shows a typical sphere stack in an L=100
tetrahedron which has a central disordered region and four
ordered frozen corners. The disordered “liquid” region con-
tains basic flips, while the frozen areas do not. The averaged
flipping probabilities of the 100�100 plaquettes are shown

in Figs. 6�c� and 6�d�. The circular disordered “liquid” region
is known as the arctic circle phenomenon �18�. The container
shape provides an intuitive understanding about how bound-
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FIG. 3. �Color online� �a� A spin ice in a diamond area under the
constant-height boundary condition. �b� The corresponding sphere
stack in an octahedron. The yellow spheres are vacant sites.
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3D shape of a full stack, including a lid �d� and a container �e�. �f�
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FIG. 5. �Color online� A tetrahedron �top� and its lid, container
and their height difference �bottom�.
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aries affect the disordered region. In a tetrahedron, the largest
horizontal cross section is a square in the middle height that
is circumscribed by the disordered region. In an octahedron,
however, the largest horizontal cross section is the total area
of the 2D system so that there is no frozen region under the
boundary condition shown in Fig. 3. This is confirmed by our
simulation. Other boundary conditions may lead to noncircu-
lar disordered regions. For example, the flower shape �19� in
Fig. 7�b� is a direct consequence of the container shown in
Fig. 4�e�.

The ensemble average over random stacks results in a
mean surface such as the one in Fig. 6�b� or Fig. 7�a�. At the
infinite-sized limit, dominating number of states are close to

this mean surface �16�, i.e., the typical surface in Fig. 6�a�
approaches the mean surface in Fig. 6�b� when L→�. The
local slope of the surface is related to the density of the basic
flips, and the density of the configurational entropy s0 �16�.
In Fig. 6�b�, s0 is zero in the frozen areas and continuously
increases to reach its maximum value at the center where the
local sphere-stack surface is flat. Consequently, the infinite-
large limit under the domain-wall boundary condition cannot
be called the thermodynamic limit due to the lack of homo-
geneity �16�. In contrast, the boundary condition in Fig. 3 has
the thermodynamic limit because the limiting surface in the
octahedron is flat everywhere, i.e., the density of basic flip is
uniform. When the height variation along the fixed boundary
is comparable to L, the limiting surface is not flat and s̄0 is
smaller. For example, under the domain-wall boundary con-
dition, s̄0=kB ln Nn=kB ln�	27 /16� based on Eq. �1�, which
is smaller than kB ln�	64 /27� under the periodic boundary
condition �6�.

IV. NETWORK PROPERTIES

The phase-space networks can be easily constructed by
stacking spheres, see Fig. 8. Two states are connected if they
are different by one sphere, i.e., one basic flip. We numeri-
cally studied the phase-space networks of the six-vertex
models under periodic, free and various fixed boundary con-
ditions. Because the phase space increases exponentially
with the lattice size, our computer can only handle the phase
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FIG. 6. �Color online� �a� A typical sphere stack in an L=100 tetrahedron. The sphere centers are connected so that it appears to be a stack
of polyhedra. �b� The mean sphere-stack surface averaged over 109 stacks at equilibrium. �b� is the limiting surface of �a� when L→� �16�.
�c� The flipping probability distribution measured from a 109-step simulation appears to be a hemisphere. �d� The flipping probability in �c�
represented by the brightness.
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FIG. 7. �a� The ensemble-averaged sphere-stack surface for
L=100 spin ice with the boundary condition shown in Fig. 4�a�.
The heights are rounded off to integers in order to show the equal-
height contours. The container shape is shown in Fig. 4�e�. �b� The
flipping probability shown by the brightness.
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spaces of small systems. Nevertheless some common fea-
tures have emerged since the networks are large. These fea-
tures in the phase spaces of sphere stacks are also shared by
the phase-space networks of 2D disk or square stacks shown
in Fig. 12.

A fixed boundary condition defines a fixed container
shape. Obviously all possible states in a container can be
accessed by adding or removing spheres one by one, i.e., the
phase space under fixed boundary condition is connected via
basic flips as shown in �5�.

The distance between two nodes is defined as the shortest
path between them. The largest distance in the network, i.e.,
the network diameter, equals to the number of spheres, which
is scaled as �L3. The numerical results show that the dis-
tances between nodes can be scaled onto a binomial-like dis-
tribution for various lattice sizes and boundary conditions.
Interestingly, the mean distance is roughly proportional to L
which increases much more slowly than the network diam-
eter. Consequently the phase spaces have the small-world
property �3� since L is logarithmically smaller than the net-
work size, �eNspin�eL2

.
One basic characteristic of networks is the degree �i.e.,

connectivity� distribution �3�. The connectivity, ki, is the
number of edges incident with the node i. Figure 9 shows the
degree distributions of phase-space networks under different
boundary conditions. The degree distributions can be well
fitted by Gaussian functions, but not by Poisson functions.
Hence they are different from the Poisson degree distribu-
tions in typical random networks �2,3� and the power-law
degree distributions in scale-free networks �2,3�. The con-
nectivity ki reflects how frequently the dynamic trajectory
visits node i. In the network theory, the visiting frequency of
a random walker on node i is exactly proportional to its local
connectivity ki �4,20�. On the other hand, the state with more
basic flips �i.e., higher connectivities� can change more eas-
ily to other states and result in a shorter staying time. These
two effects cancel out so that dynamic trajectories will spend

equal amounts of time on each node on average and the
system is still ergodic, see �4�.

An Nn-node network is described by the Nn�Nn adjacent
�or connectivity� matrix A. Aij =1 if nodes i and j are con-
nected, otherwise Aij =0. The adjacent matrixes of phase-
space networks are sparse because Nspin�L2, Nnode�es0Nspin,
and the highest connectivity kmax�L2�Nspin�Nnode. Since
edges in phase-space networks are undirected, A is symmet-
ric and all its eigenvalues, �i, are real. The eigenvalue spec-
trum and eigenvectors provide information about their struc-
tural properties �21�. For example, if all the Nn components
of the principle eigenvector are positive, then the network is
connected; Otherwise the network has isolated nodes. The
principle eigenvalue �i.e., the largest eigenvalue� can be used
to identify the community structure �22�. In an uncorrelated
random network, the principal eigenvalue �1 shows the den-
sity of edges and the second largest �2 can be related to the
diameter and the conductance of the graph as a network re-
sistance �23�. In particular, the spectral density ���� reflects
the topology of the network. It is defined as the probability
distribution of eigenvalues:

���� =
1

Nn


i=1

Nn

	�� − �i� . �2�

����’s qth moment, Mq, is directly related to the network’s
topological feature �21�: Dq=NnMq=
i=1

N ��i�q is the number
of paths �or loops� that return back to the original node after
q steps �3�. In sphere-stack networks, all closed paths have
even steps so that all odd moments are zero. Consequently,
the spectral density is symmetric and centered at zero. The
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responding sphere stacks of some states are shown in the bottom
panel. 3C denotes the complementary configuration of 3C.
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FIG. 9. �Color online� The degree distributions of the phase-
space networks. �a� Sphere stacks in tetrahedra with side length
L=6 �circles� and L=5 �squares�, i.e., 7�7 and 6�6 spin ices
under the domain-wall boundary conditions. �b� 5�5 �diamonds�,
6�6 �squares� and 7�7 �circles� spin ices with the boundary con-
ditions shown in Fig. 4�a�. �c� 4�3 �diamonds�, 4�4 �squares� and
4�5 �circles� spin ices with the free boundary conditions. �d� 2D
disk or square stacks in L=8 �triangles�, 9 �diamonds�, 10 �squares�,
11 �circles� container. Insets: semi-log plots. The curves in the main
plots and insets show the best Gaussian fits.
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ith node with ki neighbors has ki ways to return back after

two steps; hence, the variance 
2=M2=
iki /Nn= k̄, where

k̄=2Nedge /Nn is the mean connectivity. In Fig. 10, we res-

caled the measured spectral densities by k̄1/2 to the unit vari-
ance and they all collapsed onto the same Gaussian distribu-
tion. Such Gaussian behavior is expected to hold at the large-
size limit as long as the model can be mapped as a stack of
building blocks, see the proof in �4�. Since the six-vertex
models can be mapped as sphere stacks, the proof in �4�.
holds and the spectral density become exact Gaussian when
the system is large. In practice, the spectral densities are
already Gaussian in our small systems. For example, all the
Gaussian fits in Fig. 10 are indistinguishable from the
e−��2/2 /	2� curve. In contrast, the spectral density is a semi-
circle for a random network at large-size limit, a triangular
distribution with power-law tails for scale-free networks, and
irregular distributions for small-world, modular hierarchical
and many real-world networks �21�. Thus, these phase-space
networks belong to a new class of complex networks.

V. DISCONNECTED PHASE SPACES

Unlike the free and fixed boundary conditions, the peri-
odic boundary conditions in frustrated spin systems lead to
disconnected phase spaces �24,25�. Here, we quantitatively
calculate the number and the sizes of some disconnected
phase-space subnetworks. First we consider the example in
Fig. 11, which shows all the 44 configurations of the 2�3
spin ice with a toroidal boundary condition. Note that this
periodic boundary condition is for spins, not for heights. The
upper left corner is defined as zero height. The 12 configu-
rations in Fig. 11�a� are connected by basic flips and form a
12-node cluster as shown in Fig. 11�d�. The other 12 con-
figurations in Fig. 11�b� form another 12-node cluster in Fig.

11�d�. The height difference between the top and the bottom
corners is +1 in Fig. 11�a� and −1 in Fig. 11�b�. Note that the
four corners are essentially the same plaquette on the toroid,
so they must be either all inside or all outside of a loop.
Consequently, the height differences between the corners
cannot be changed by flipping a closed spin loop, see Fig.
11�e�. Therefore, the configurations in Figs. 11�a� and 11�b�
form two disconnected clusters in Fig. 11�d�. The 20 isolated
nodes in Fig. 11�d� correspond to the 20 configurations in
Fig. 11�c�, none of which contains basic flips.

We generalize the above results to the m�n periodic lat-
tice and prove that it has �m−1�� �n−1� nontrivial clusters
and 2n+1+2m+1−4 isolated nodes. After walking along the
two closed loops along the x and y directions on the toroid
and coming back to the original plaquette, the height may
change. Such height differences, �hx and �hy, uniquely char-
acterize each disconnected subnetwork. We choose the con-
figuration whose bulk spins are along the boundary spins to
represent each subnetwork, e.g., configuration 1 in Fig.
11�a�, configuration 13 in Fig. 11�b� and all configurations in
Fig. 11�c�. First, we consider the number of isolated nodes in
phase space whose configurations have no basic flips. For
such a configuration, all of its horizontal spins or vertical
spins have to be along the same direction as shown in Fig.
11�c�. If all horizontal spins are leftwards �or rightwards�,
there are 2m configurations for vertical spins �see Fig. 11�c��.
If all vertical spins are upwards �or downwards�, there are 2n

configurations for horizontal spins. Four configurations have
both horizontal and vertical parallel spins. These four con-
figurations are double counted so that in total there are
2n+1+2m+1−4 isolated nodes as shown in Fig. 11�c�. Next,
we consider the nontrivial clusters with multiple nodes. The
corner height difference, �hx, has m−1 possible values, and
�hy has n−1 possible values �see Fig. 11�f��, so that there
are �m−1�� �n−1� nontrivial subnetworks in total. The rep-
resentative configurations of the six subnetworks shown in
Fig. 11�f� are chosen to have the lowest possible heights, i.e.,
vacant containers for sphere stacking. Each configuration is
characterized by one basic flip labeled as a yellow square,
i.e., the lowest point of the vacant container. Apparently,
there are �m−1�� �n−1� positions for the yellow square, i.e.,
�m−1�� �n−1� subnetworks. The subnetwork with the mini-
mum �hx and �hy �i.e., 0 or �1� has the largest subnetwork
because it corresponds to the constant-height boundary con-
dition. This result implies that the zero-point entropy �i.e.,
entropy per spin at the ground state� s̄p of the whole network
under the periodic boundary condition is the same as the
entropy s̄s of the largest subnetwork under the constant-
height boundary condition because �m−1�� �n−1� is loga-
rithmically smaller than em·n:

s̄s  s̄p =
1

Nspin
ln Nnode

p 
1

Nspin
ln��m − 1��n − 1�Nnode

s + 2m+1

+ 2n+1 − 4� �
1

Nspin
�ln�m − 1� + ln�n − 1� + ln es̄sNspin�

�
1

mn
�ln�m − 1� + ln�n − 1�� + s̄s � s̄s. �3�
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free b.c. 3x3
2D L=8

FIG. 10. �Color online� Rescaled spectral densities of phase-

space networks. Variances are rescaled to 1 by ��=� / k̄
1
2 . Solid

squares: the 7436-node network of the 7�7 lattice with the
domain-wall boundary condition, i.e., sphere stacks in L=6 tetrahe-
dron; Diamonds: the 2970-node network of 5�5 lattice with the
periodic boundary condition. The data point of ��0�=2.04 is out of
the figure. This peak reflects many starlike and isolated nodes under
the periodic boundary condition; triangles: the 2604-node network
of 3�3 lattice with the free boundary condition; circles: the 12870-
node network of 8�8 square stacks in 2D. Black curve: Gaussian
distribution e−��2/2 /	2�. Dashed curve: Wigner’s semicircle law for
random networks. ����=	4
2−�2 / �2�
2� if ���2
 and zero oth-
erwise. The variance 
2 is also rescaled to 1.
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Next, we show that the smallest nontrivial cluster has
�m+n−1�!

�n−1�!�m−1�! nodes. In Fig. 11�f�, the two middle configurations
are the representative states for the two 132-node subnet-
works and the other four configurations are the representative
states for the four 60-node subnetworks. These four configu-
rations with the lowest heights at the corners define tilted 2D
containers rather than 3D containers, for example see the first
panel of Fig. 11�f�. Thus, the number of spheres packed in
such a container is much smaller than that in 3D containers
whose lowest point �the yellow plaquette� is not at the cor-
ner. To count the number of stacks in a tilted 2D container,
we first consider a simple example in Fig. 11�a�. Configura-
tion 1 in Fig. 11�a� is the representative state of the subnet-

work with the lowest height of −3. Configurations 1 to 4 in
Fig. 11�a� have the same boundary spins so that we can view
them as the 2D sphere stacks in the same 1�3-sized 2D
rectangle. Such a blue 1�3 container has three possible po-
sitions relative to the zero height plaquette, see configura-
tions 1, 5, and 9 in Fig. 11�a�. Hence the subnetwork has 3
�4=12 nodes in total. It is easy to generalize this counting
to m�n square ice on a toroid. There are m possible posi-
tions for the m� �n−1�-sized rectangle. For 2D sphere stack-
ing in an m� �n−1� container, there are Cm+n−1

m configura-
tions, see Fig. 12 and its caption. Consequently, there are
mCm+n−1

m = �m+n−1�!
�n−1�!�m−1�! nodes in the smallest nontrivial subnet-

works. All the above formulas are confirmed by our numeri-

1

2

5

3

6

4
12

9

8
11

10

7 13

14

17

15

18

16
24

21

20
23

22

19

4341
44

40

423836
39

35

37

2826

29
25

27 3331

34

30
32

=

2
2

...

2
2

2
3

... 2
3

2x2 +2x2 - 4 = 20
2 3

(D)(C)

(F)

0 -1

-1 -2

-2 -3

-1 -2

0

-1

-2

-1

1 0 -1

-1 -2

-2 -1

-1 -2

0

-1

-2

-1

2
0 -1

-1 0

-2 -1

-1 -2

0

-1

-2

-1

3

0 -1

-1 -2

0 -1

-1 -2

0

-1

0

-1

5

0 1

-1 0

-2 -1

-1 0

0

-1

-2

-1

4

0 -1

-1 0

0 -1

-1 -2

0

-1

0

-1

6
0 1

-1 0

0 -1

-1 0

0

-1

0

-1

7

0 -1

1 0

0 -1

-1 -2

0

1

0

-1

9

0 1

-1 0

0 1

-1 0

0

-1

0

-1

8

0 1

1 0

0 -1

-1 0

0

1

0

-1

10 0 1

1 0

0 1

-1 0

0

1

0

-1

11
0 1

1 2

0 1

-1 0

0

1

0

-1

12

0 -1

-1 -2

0 -1

1 0

0

-1

0

1

13
0 -1

-1 0

0 -1

1 0

0

-1

0

1

14 0 -1

-1 0

0 1

1 0

0

-1

0

1

15

0 -1

1 0

0 -1

1 0

0

1

0

1

17

0 1

-1 0

0 1

1 2

0

-1

0

1

16

0 -1

1 0

0 1

1 0

0

1

0

1

18
0 1

1 0

0 1

1 2

0

1

0

1

19

0 -1

1 0

2 1

1 0

0

1

2

1

21

0 1

1 2

0 1

1 2

0

1

0

1

20

0 1

1 0

2 1

1 2

0

1

2

1

22
0 1

1 2

2 1

1 2

0

1

2

1

23 0 1

1 2

2 3

1 2

0

1

2

1

24

(A) (B)

0 ∆h =-2x

∆h =-1y ∆h +∆hx y

0 0

000

0

-1-1

1

20

1

-2

1

2-1

-1

-2

-2 -3

-4-2 -3

-3 -4 -5

(E) ha hb ha hb

FIG. 11. �Color online� Configurations and the phase-space network of 2�3 spin ice with the periodic boundary condition. �a� Con-
figurations 1 to 12. The upper left plaquette is defined as zero height and other heights are derived from the height rule in Fig. 1�e�. �b�
Configurations from 13 to 24. �c� 20 configurations that contain no basic flips. They are categorized into four types: all horizontal spins are
�1� leftwards; �2� rightwards; all vertical spins are �3� upwards; �4� downwards. Four configurations are double counted, so the total number
of configurations is 2�22+2�23−4=20. �d� The whole phase-space network with 44 nodes. �e� Flipping a loop does not change the height
difference if two plaquettes are both inside or outside the loop. �f� 3�4 spin ice with periodic boundary conditions. There are
�3−1�� �4−1�=6 types of different ��hx ,�hy�, i.e., 6 nontrivial subnetworks. The 6 representative configurations for the 6 subnetworks
have the lowest heights which define their container shapes. Each container has a unique lowest height labeled in yellow.
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cal results at m ,n8. Our results at m=n agree with the
number sequence A054759 in �27� for the n�n spin ice
under the periodic boundary conditions.

The phase-space subnetworks of the periodic boundary
conditions share the same properties of the phase-space net-
works under fixed boundary conditions. For example, the
phase space of the 4�5 lattice under the periodic boundary
condition consists of 12 disconnected nontrivial subnetworks
and 92 trivial isolated nodes. Four identical nontrivial sub-
networks have 280 nodes each, two have 730 Nodes each,
four have 1280 nodes each and two have 4550 nodes each.
The four types of the subnetworks all have Gaussian spectral
densities, see Fig. 13. The peaks at zero reflect the star-like
structures in the networks �28�.

VI. SUMMARY AND OUTLOOK

We constructed a one-to-one mapping between the six-
vertex model and the stack of close-packed spheres. Differ-
ent boundary conditions correspond to different container
shapes. The container and the lid form a pair of dual sur-
faces. The container shape can qualitative elucidate the
boundary effect.

Sphere stacking is not only helpful to phase-space net-
work construction, but also interesting in combinatorics in its
own right. Sphere packing is a branch of discrete mathemat-
ics. However a typical sphere-packing problem is to find the
arrangement that fills the space most efficiently, not their
combinatoric properties in a container. Currently the only
available combinatoric formula for sphere packing is Eq. �1�,
which gives the number of alternating signed matrixes. Since

alternating signed matrixes and sphere stacks in a tetrahe-
dron have one-to-one correspondence, Eq. �1� also gives the
number of ways to pack spheres in tetrahedra. We numeri-
cally verified that there are 2, 7, 42, 429, 7436, 21 8348 ¯

�i.e., the sequence A005130 in �27�� ways to pack spheres in
L=1,2 ,3 ,4 ,5 ,6 ,¯ tetrahedra. We also numerically ob-
tained 2,18,868,230274, ¯ ways to pack spheres in L
=1,2 ,3 ,4 ,¯ octahedra, but a quantitative formula for this
number sequence is not available.

The combinatoric properties of sphere stacking can be
similarly studied as the cube stacking. The cube stacking is
not only equivalent to the random rhombus tiling or the
plane partition in pure mathematics �10�, but also naturally
appears in many chemical and physical problems such as
counting benzenoid hydrocarbons, percolation, crystal melt-
ing and string theory �29�. In particular, it has a one-to-one
correspondence to the frustrated antiferromagnetic Ising
spins on 2D triangular lattice �4,8�. In contrast to the inten-
sively studied cube stacking, sphere stacking has not been
explored. Many questions studied in cube stacking can be
asked about sphere stacking. For example, how many ways
are there to pack N spheres into a tetrahedron? What are the
analytical forms of the limiting surfaces in Fig. 6�a�, i.e.,
what are the entropy density distributions �16,30�? These
questions can also be asked about other container shapes
such as octahedron. In particular We measured the number of
packing configurations W�n� as a function of the number of
“sand grains” n. Interestingly we found that W�n� of different
sand grains �such as 2D squares, 3D cubes, 3D spheres� and
different containers exhibit the same limiting behaviors,
which suggests some fundamental connections between the
generating functions of these systems. Note, the generating
functions �10,31� of sphere stacks in different containers are
still open questions.

Moreover, the six-vertex model has one-to-one correspon-
dences to other 2D models, such as gog triangles �32� three-
color graphs, dimers, fully packed loops, etc �33�. It also has
a one-to-multiple correspondence to the domino tiling �34�.

=
(A)

(B) gravity

gravity

FIG. 12. �Color online� �a� The 2D circle stacks have one-to-one
correspondence to the 2D square stacks. Each circle/square is sup-
ported by two circles/squares underneath in a gravity field. �b� Map-
ping a 2D stack of squares in an a�b=7�9 container to a chain of
a solid particles and b holes �26�. The dynamics of
adding/removing squares can be described as the diffusion of par-
ticles in a symmetric simple exclusion process �SSEP�. The number
of 2D stack configurations in a container is Ca+b

a = �a+b� ! / �a !b!�,
i.e., the number of ways to put a particles onto a+b sites.
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FIG. 13. �Color online� The eigenvalue histograms of the four
disconnected subnetworks of the phase space of 4�5 lattice under
the periodic boundary condition. The four subnetworks have 280,
730, 1280, and 4550 nodes, respectively.
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Sphere stacking is a new equivalent representation in 3D
with more transparent symmetries. Hence it may cast new
lights on these 2D models, in particular, on the conjecture of
the one-to-one mapping between gog triangles and magog
triangles �32�.

We mapped out the phase-space networks of small six-
vertex models under different boundary conditions. In con-
trast to some conventional phase-space studies which used a
random walker to explore a small portion of a huge phase
space, we mapped out the whole phase spaces so that exact
results can be obtained from quantitative network analysis.
Although we can only measure phase-space networks of
small systems, these numerical results have allowed us to
show that the observed features also hold in large systems.
We observed that the phase-space networks have the small-
world property, the Gaussian-like connectivity distributions
and the Gaussian spectral densities. These features are also
shared by the ground-state phase spaces of frustrated antifer-
romagnets on triangular lattices �see �4�� and the phase-space
networks of the particles diffusion in one-dimensional lattice
�i.e., the 2D square stacking shown in Fig. 12�. It would be
interesting to explore whether these features universally hold
in phase spaces of other frustrated spin models and particle-
diffusion models. In particular, the Gaussian spectral densi-
ties reflect the unique network structures and distinguish the
phase spaces from social networks, information networks,
biological networks and technological networks �2�. We also
derived a few formulas about the number and the sizes of
some disconnected phase-space subnetworks under periodic
boundary conditions. The sizes of other subnetworks are still
challenging.

The connections between the frustrated spin model and
complex networks give rise to new open questions. For ex-
ample, how do we calculate the number of edges in the
phase-space network? How do we prove that the degree dis-
tributions in Fig. 9 are Gaussian? Is the flipping probability
in Fig. 6�c� a hemisphere? Are there any highly connected

communities in the phase spaces? Do phase spaces have
fractal structures? Some of these questions can be directly
answered by the complex network analysis developed in the
recent decade �3�. A number of network analysis techniques
have been readily applied to the phase-space study, such as
the correlations �3�, centrality �3�, community structures
�22�, fractal properties �35� and coarse graining �36�. These
techniques can provide a better understanding of the phase-
space structures.

In particular, the network community analysis may pro-
vide a mean to quantify the weak ergodicity. A network is
said to have community structure if it divides naturally into
groups of nodes with dense connections within groups and
sparser connections between groups. If the phase-space net-
work have strong community structure, the system will be
trapped in a small part of its phase space for a very long
time, which is usually called as weak ergodicity or entropic
barrier �37�. Network analysis can detect the community
structures if there are any, and the “strength” of each com-
munity is characterized by the modularity �22�. This provides
a quantitative measure for the weak ergodicity, which was
not available before. Moreover, the network fractal analysis
may cast lights on the highly controversial nonextensive
Tsallis entropy �38,39�, which is a generalization of Boltz-
mann entropy for nonequilibrium or long-ranged interacting
systems. Tsallis entropy is based on the assumption that the
long-ranged interacting systems have fractal phase spaces
�38�. However, a real example of fractal phase space was not
available yet. In the six-vertex model, the boundary effect
can percolate through the entire system and exhibit long-
range interacting features. Hence, it would be interesting to
explore whether the phase spaces are fractal by using the
network fractal analysis �35�.
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